Pathophysiology of functional mutations of the thiazide-sensitive Na-Cl cotransporter in Gitelman disease.
نویسندگان
چکیده
Most of the missense mutations that have been described in the human SLC12A3 gene encoding the thiazide-sensitive Na(+)-Cl(-) cotransporter (TSC, NCC, or NCCT), as the cause of Gitelman disease, block TSC function by interfering with normal protein processing and glycosylation. However, some mutations exhibit considerable activity. To investigate the pathogenesis of Gitelman disease mediated by such mutations and to gain insights into structure-function relationships on the cotransporter, five functional disease mutations were introduced into mouse TSC cDNA, and their expression was determined in Xenopus laevis oocytes. Western blot analysis revealed immunoreactive bands in all mutant TSCs that were undistinguishable from wild-type TSC. The activity profile was: wild-type TSC (100%) > G627V (66%) > R935Q (36%) = V995M (32%) > G610S (12%) > A585V (6%). Ion transport kinetics in all mutant clones were similar to wild-type TSC, except in G627V, in which a small but significant increase in affinity for extracellular Cl(-) was observed. In addition, G627V and G610S exhibited a small increase in metolazone affinity. The surface expression of wild-type and mutant TSCs was performed by laser-scanning confocal microscopy. All mutants exhibited a significant reduction in surface expression compared with wild-type TSC, with a profile similar to that observed in functional expression analysis. Our data show that biochemical and functional properties of the mutant TSCs are similar to wild-type TSC but that the surface expression is reduced, suggesting that these mutations impair the insertion of a functional protein into the plasma membrane. The small increase in Cl(-) and thiazide affinity in G610S and G627V suggests that the beginning of the COOH-terminal domain could be implicated in defining kinetic properties.
منابع مشابه
Defective processing and expression of thiazide-sensitive Na-Cl cotransporter as a cause of Gitelman's syndrome.
Gitelman's syndrome is an autosomal recessive disorder of salt wasting and hypokalemia caused by mutations in the thiazide-sensitive Na-Cl cotransporter. To investigate the pathogenesis of Gitelman's syndrome, eight disease mutations were introduced into the mouse thiazide-sensitive Na-Cl cotransporter and studied by functional expression in Xenopus oocytes. Sodium uptake into oocytes that expr...
متن کاملWNK kinases regulate thiazide-sensitive Na-Cl cotransport.
Pseudohypoaldosteronism type II (PHAII) is an autosomal dominant disorder of hyperkalemia and hypertension. Mutations in two members of the WNK kinase family, WNK1 and WNK4, cause the disease. WNK1 mutations are believed to increase WNK1 expression; the effect of WNK4 mutations remains unknown. The clinical phenotype of PHAII is opposite to Gitelman syndrome, a disease caused by dysfunction of ...
متن کاملA novel initial codon mutation of the thiazide-sensitive Na-Cl cotransporter gene in a Japanese patient with Gitelman's syndrome.
We here report a novel mutation of the thiazide-sensitive Na-Cl cotransporter (TSC) (SLC12A3) gene in a Japanese patient with Gitelman's syndrome (GS). GS is characterized by a renal disorder and is associated with hypokalemia, hypomagnesemia, metabolic alkalosis and hypocalciuria arising from the defective tubular reabsorption of magnesium and potassium. This disease is reportedly caused by mu...
متن کاملMolecular physiology and pathophysiology of electroneutral cation-chloride cotransporters.
Electroneutral cation-Cl(-) cotransporters compose a family of solute carriers in which cation (Na(+) or K(+)) movement through the plasma membrane is always accompanied by Cl(-) in a 1:1 stoichiometry. Seven well-characterized members include one gene encoding the thiazide-sensitive Na(+)-Cl(-) cotransporter, two genes encoding loop diuretic-sensitive Na(+)-K(+)-2Cl(-) cotransporters, and four...
متن کاملThe use of lepirudin in haemodialysis complicated with heparin-induced thrombocytopenia type II (HIT II)--dosage monitoring.
1. Bettinelli A, Giovanni M, Bianchetti MG et al. Use of calcium excretion values to distinguish two forms of primary renal tubular hypokalemic alkalosis: Bartter and Gitelman syndrome. J Pediatr 1992; 120: 38–43 2. Lin S-H, Cheng N-L, Hsu Y-J, Halperin ML. Intrafamilial phenotype variability in patients with Gitelman syndrome having the same mutations in their thiazide-sensitive sodium/chlorid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 287 2 شماره
صفحات -
تاریخ انتشار 2004